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We study numerically the complex domains of validity for KAM theory in 
generalized standard mappings. We compare methods based on Pad6 
approximants and methods based on the study of periodic orbits. 
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1. I N T R O D U C T I O N  

The goal of this paper is to study numerically the complex domains of 
values of e for which a standard like map from R 1 x T 1 to itself 

T~(p, q) = ( p  + es(q), q + p - ~s(q) ) (1.1) 

leaves invariant topologically nontrivial circles on which the motion is, up 
to a smooth changes of variables, a rigid rotation by an angle ~. The well- 
known KAM theorem guarantees that, provided e) is Diophantine, there is 
a ball of positive radius on which there is such a curve. 

Unfortunately, the estimates that come out of the analytical proofs are 
very conservative and, given the practical importance of constants, it is of 
considerable interest to devise proofs without this failing or, at least, devise 
reliable methods for numerical computation. Problems such as (1.1) 
provide convenient models of the general situation. 

The reason to study domains of analyticity is that, in applications, one 
frequently uses perturbation expansions whose behavior and usefulness are 
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affected by complex singularities even if the behavior of the true answer is 
perfectly well behaved for real values of e. 

The case when s(q)= (1/2z~)sin(2rcq) (called the standard map) and 
co = (x / -5-  1)/2 was studied in ref. 4 by deriving a perturbation expansion 
in powers of e and using a Pad6 approximant of the series. They obtained 
the surprising result that the domain of analyticity was a circle. Several 
other families were studied in ref. 5. 

In this paper, we consider the same problem for s of the form of a 
trigonometric polynomial of low degree. 

We reimplemented from scratch the Pad6 method of refs. 4 and 5 
using an extended precision library the reasons for doing so are discussed 
in the section about the Pad6 method- -and  we used an independent 
method: a complex extension of Greene's method, which seems to afford 
higher precision and for which some theoretical justification is recently 
available(Y,19) (we point out that the justification used in ref. 7 works even 
for the case when the parameters are complex). At the end, we propose 
some tentative discussion of these results from the renormalization group 
point of view about the phenomena of the disappearance of circles. 

2. G R E E N E ' S  R E S I D U E  C R I T E R I O N  

2.1. The  Basis of  Greene's  Cr i ter ion  

In a remarkable paper, Greene (9) observed that, for the standard map, 
it is possible to ascertain the existence of an invariant circle with rotation 
number co by computing the "residue" of periodic orbits of type 
Mn/N,--that is, orbits which satisfy 

TU"(p, q) = (p, q + M,), M~/N, --* co 

If we define R(p, q; Mn, Nn)=Tr(DT~"(p, q) -2) ,  then ref. 9 asserts that 
there is an invariant circle of rotation number co if and only if 
R(p ,q;M,;Nn)~O.  

The importance of this criterion arises from the fact that it is very easy 
to compute periodic orbits even of relatively high periods. Greene (9) used 
an algorithm first described in ref. 6 that exploits the fact that maps of the 
form (1.1) are "reversible." There are other algorithms (see, e.g., refs. 13 
and 20). 

We will see later that the method generalizes to the complex case. 
Unfortunately, Greene's residue criterion is difficult to justify 

rigorously and there are strong indications that, as stated, it is false even 
for standard-like mappings which are not the standard map. 
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Nevertheless, it is possible to prove rigorously statements that serve as 
justification of practical computations. 

For  example, it is possible to show the following. 

T h e o r e m  2.1. Let T~ be an analytic map as before; ~o is Diophantine. 
Assume that 

sup IT~(p,q)l<~F<~oo, sup [Tj~(p,q)l<<.F<~oo 
Jim ql ~< 6 Llrn ql ~< 6 

and that there is a mapping K: T I ~  R x T  1 with f(K(~o))=K(~o +co) and 
that suPlim~l .~6 [K(q))[ ~<F. 

Then, there exists a constant D > 0 ~ d e p e n d i n g  on the Diophantine 
properties of the number c~--such that for every periodic orbit x of type 
M/N with/6o - MINI <~ 1/N 

IR(x) I <~De D61~--M/Nl-l/l*v 

We observe that the proof of Theorem 2.1 in ref. 7 consists in computing 
normal forms up to high enough order around the invariant circle and 
observe that, as a corollary of the proof, one obtains also upper bounds 
for the residues of orbits whose rotation number is similar to co. This 
justification, as stated in ref. 7, carries over without any change to the case 
that the parameters, and hence the circles, take complex values. 

We also emphasize that the justification implies that all periodic orbits 
with a certain rotation number close to co will have a small residue. In 
general, we expect to have many periodic orbits with the same rotation 
number. We refer to ref. 22 for a discussion of the combinatorics of the 
calculation of periodic orbits based on critical lines. If, for any of them, the 
residue is large, we can take it as an indication that the invariant circle has 
disappeared. 

Notice that if the residue of an orbit is not zero, the eigenvalues of the 
derivative are not 1. Hence, applying the implicit function theorem, we 
conclude that if for some e0 we can find x~0 such that T2x~o = x~o + (0, M) 
and ER(x~0; M, N)[ = ~ ~a 0, we can find a neighborhood [ e -  sol ~ p on 
which we can find a unique x~ satisfying TN(x~) = x~ + (0, M). Moreover, 
R(x~; M, N) will be an analytic function of 5. One then expects that the 
equation IR(x,; M, N)[ = c~ will define a smooth curve in the e plane in the 
neighborhood where it is defined, l i t  seems that R(x~; M, N) has very large 
derivatives in the cases of interest, hence, the curve has reasonably small 
derivatives. ] 

This remark and the partial justification of the residue criterion 
suggest the following algorithms. 
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Algorithm 2.2. Fix ~>0 .  

1. Find a real number eo and a periodic orbit for T~o satisfying 

IR(x~0; M, N)] = 

2. Given that we know en=rne i~ satisfying [R(x~, ;M,N)[=~,  fix 
0n+i >0n,  [0~+1 -0h i  small, and then find rn+~ such that e,,+l =r,+x ei~ 
satisfies IR(x~,+~ ; M, N)] = ~. 

A l g o r i t h m  2.3. Fix ~ > 0 and a family of paths e = Po(t) with t e R 
being the parameter along the path and 0 being an index for the paths 
[e.g., Po(t) = te 2~i~ or Po(t) = 0 + it]. 

1. If we fix 0, t, we find one periodic orbit Xo, t of type M / N  of a 
certain topological type. Then, R(xo.,; M, N) is a function of 0, t. 

2. For  fixed 0, we can consider R(xo, t ;M,  N ) - ~  as a function of t 
and feed it to a reliable zero finder. This gives us a critical value t*. 

3. Cycling over different O's, we can obtain a curve e = Po(t*(O)) of 
critical points. 

Notice that Algorithm 2.2 is just a version of the well-known continua- 
tion methods and it is quite well understood how to write safeguards which 
examine that the conditions of the implicit function theorem apply. There- 
fore, if the program runs without detecting an error, we may be confident 
that indeed there is a curve 7(x~0; M, N) in the complex plane for which the 
residue of the orbit (of the given topological type) takes the value ~. 

The method of Algorithm 2.3 is somewhat more delicated to imple- 
ment, and is slower to run. The main reason is that, for fairly high values 
of the parameter, there are different orbits of type M / N  and it is necessary 
to take special precautions to ensure that all the evaluations of 
R(xo.t ;M, N) required by the zero finder are on the same family, especially 
if the evaluations are on fairly separate values. 

We avoided this problem by ensuring that the intervals for t were not 
very large, (they were centered in the last successful value) and we kept the 
last found periodic orbit as a guess. 

We have said that Algorithm 2.3 is somewhat slower. Nevertheless, we 
found it useful to have several algorithms so that comparing their results 
could give us confidence on their reliability. As discussed later, we also 
compared the results obtained by using different algorithms for finding 
zeros and computing orbits. 

We emphasize that, given the justification outlined in Theorem 2.1 for 
reasonably high M, N, we should consider the critical lines produced by 
the algorithm as lying outside the domain of analyticity, so that the most 
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sensible approximation of the true domain of analyticity we can form is the 
intersection of the regions bounded by the computed curves. Even if each 
of the curves is smooth, the final domains obtained taking intersections 
could very well have cusps. Taking the limit of a finite number of inter- 
sections allows that the final result is very complicated. 

Algorithms 2.2 and 2.3 depend on having reliable methods for 
computing periodic orbits. We have used two. First, we observe that the 
Greene-DeVogelere method can be generalized to complex maps, We 
quickly review Appendix A of ref. 9 to check that the method described 
there only involves algebraic manipulations that are valid for complex 
numbers. 

This method is based on the observation that T~ in (1.1) can be 
written T~ --- I2,~ o Ix,~ with 12 - 12 - Id: l,e -- 2,~ -- 

Ix(p,  q) = (p  + es(q), - q )  

I 2 ( p , q ) = ( p ,  - q +  p) 

We denote by t2 x the set of points left fixed by I1. If one point 
T2N ~ (po, qo)ef2 l a n d  TN(po,  qo)~O~,  then ~ tpo,  q o ) = ( p o ,  qo). In effect, 

2N -- X T~ ( P o ,  q o ) =  r~  V ~176176  T N - 1  ~176 qo) 

= T N-x~ ~ T N x~ qo) 

Since 12 ,  e o T~ = I2~ o I1,~ = I 1 , ~  and T~ o Ix,~ = 1 2 , e  ~ 121,e = 12,~, we obtain that 
T2N , tP0, qo) = (Po, qo)- 

The set/2~ can be calculated explicitly, since, using the form of 11, we 
obtain (Po, qo) s t?x if and only if 

Po - es(qo) = Po 

qo = - q o  + k 

When s (0 )=  s(1/2)= 0, which is the case for the trigonometric polynomials 
we have considered, the above equations are equivalent to qo = 0, qo-- 1/2. 
We will refer to these two vertical lines as the "critical lines." 

The algorithm for searching for periodic orbits consists in searching 
along a critical line for the points that, after a certain number of iterations, 
come back to another critical line. This amounts to finding the zeros of a 
function of one variable. 

In the case that the variable is real there are excellent zero finders that 
exploit the mean value property. In the complex case, however, one has to 
use other methods, such as the secant method. We found, however, that 
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one obtains better results in one tries to minimize the target function using 
a Powell method (8~ considering the complex variable as two real variables. 

Notice that the secant method requires a reasonably good guess to 
converge to the solution, especially in the case that the function whose 
zeros we are computing is very rapidly oscillating. For our purposes this 
can be achieved by taking as a guess for the location of the periodic orbit 
for one value of the parameter the location of the periodic orbit for a 
previously computed similar value and then increasing. Nevertheless, the 
method becomes delicate to use and we preferred to use Powell'S method 
for most of the calculation. 

Another algorithm we used was based on the variational principle for 
periodic orbits that plays an important role in Aubry-Mather  theory. 

I_emma 2.4. A sequence of angles {ql ..... q~} is the projection of a 
periodic orbit {(Pl,  ql),..., (P, ,  q,)} of type M/N for (1.1) if and only if 
(ql ..... q.) is a critical point of the function 

Y(ql,..., q~) = ~ (q~-qi+l)2+eS(q~) +-~(q, -c l l -M)2+eS(q~)  
i=l 

where S'(q) = s(q). [-Notice that the condition S s(q) dq = 0 ensures that we 
can find such an S defined on the circle.] 

We observe that this variational principle generalizes to the complex 
case if we consider 

~(q~ ,...,q,)= 5:(ql,...,qn) 5:(ql ,..., q,) 

because then we obtain, considering q~, qi as independent variables, 

35~(q~'" q~) - 5:(q~ ..... q.) c~J(q~ ..... q.) 

~3qi c3qi 

05~(ql ..... q,) ~5~(q1,..., q,) 
- -  o Q ~  , . . . ,  q.) 

~qi ~qi 

(c35:(q~ ..... qn)) 
= 5#(ql'""q~) \ ' ~q/ 

If we add a large enough constant to 5: that ensure that 5e(ql ..... qn) 
0, we see that the variational equations for ~ ,  with qi, qi as independent 

variables, are equivalent to the corresponding equations for 5C 
Inspired by ref. 11, which uses the gradient flow of the action as a 
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functional in the space of orbits to prove the existence of critical points, we 
implemented the system of differential equations 

dq~ c3 C~(q~, . . . ,q~)=Sp(q~, . . . ,q ,  ) c~SP(ql,...,qn) (2.!) 
dt dqe Oq~ 

The solutions of these equations--implemented using, e.g., a standard 
Runge-Kutta solver--converge rather quickly to approximate solutions, 
especially if we take as initial conditions points which are close to being a 
solution (e.g., the solutions for similar parameter balues). Notice that the 
RHS of the equations is very easy to evaluate since most of the terms that 
are obtained taking the derivative of 5 P vanish. 

In this case, the periodic orbits can be compared with those obtained 
using the secant method and verified directly to be x orbits. 

3. T H E  PADI~  M E T H O D  

Berretti and Chierchia (4) suggested the use of Pad6 approximants 
to study the analyticity domain of the expansion in powers of e of the 
solutions of 

~,~u~(x) + ~s(x + u~(x)) = 0 (3.1) 

where A o~ is the operator defined by 

Ao)u~(x) = u~(x + co) - 2u~(x) + u~(x - co) 

and where u~ : T 1 ~ R satisfies 

u~(x + 1) = u~(x) (3.2) 

The function u~ is called the "hull function" by Aubry and if we define 

K~ u~(x)-u~(x-co)-co ) u s ( x )  + x (3.3) 

then 

T~o K~(x)  = K~(x + co) with K~(x  + 1 ) = K~(x)  (3.4) 

so that K~ semi-conjugates the motion on an invariant circle to a rotation 
co. The quantity u~(x) + x gives the conjugacy of a rotation of the motion 
of the first component. 
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Hence, finding solutions of (3.1) for a fixed e implies that there is 
indeed a circle with the motion on it being conjugate to a rotation. 

Conversely, finding a solution of (3.4) implies that there is a solution 
of (3.1), as can be verified by direct calculation. 

Hence, we define the domain of validity of the KAM theorem as the 
doma of e for which it is possible to find a solution of (3.4) or (3.1). 

Using the Birkhoff theorem (16) and Herman's theorem on conjugacy to 
rotations of smooth diffeomorphisms of the circle for Diophantine rotation 
numbers, (x2) one can show that, for real ~ and Diophantine co, the existence 
of analytic solutions of (3.1) is equivalent to the existence of topologically 
nontrivial invariant circles for (1.1) with rotation number e). 

However, for complex e, we do not know any version of the 
Aubry-Mather  theorem that could show that invariant circles are graphs. 
Nevertheless, Herman's theorem still applies, so that, in the complex case, 
that (3.4) is equivalent to the existence of topologically invariant circles. 

It is not excluded that (3.1) does not admit a solution, but that, 
nevertheless, (3.4) does. That will happen, for example, if the invariant 
circle is not a graph. 

We point out that if u~(x) is a solution of (3.1), so is u~(x+tt~)-tt~, 
but, except for this, the solution is unique. We can, and will, always choose 
a solution satisfying a normalization condition 

f u~(x) ,ix = 0  (3.5) 

A power series expansion for u~(x)= ~=1 du~(x) can be computed by 
matching powers of e if we have a way of computing the expansion in 
powers of s(x + u~(x))= 52i=0 e~s~(x) in terms of the expansion in powers of 

for u. Similar methods have been used in refs. 4, 10, and 21. 
Then, Eq. (3.1) becomes 

zl,ou~(x) + s i -  l ( x )  = 0; Uo(X) = 0 (3.6) 

Notice that s i 1 can be computed in terms of u ~ ..... u i-  1, so that (3.6) 
should be considered as an equation that allows the computation of u i 
given that we know u~ u i 1. 

The theory of inversion of the operator Ao~ is worked out in detail 
in several places, for example, ref. 23, w We just recall that, if co is 
Diophantine and s i -  1 is analytic and satisfies 

f s i -  l(x) dx = 0 (3.7) 

it is possible to find a unique u ~ solving (3.6) and (3.5). 
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To complete the proof of the claim that (3.6) can be solved by 
matching orders, we only have to show that if u~ u;- 1 solve (3.6), then 
s ~ 1 satisfies (3.7). To prove that, we observe that if u is a periodic function 
and A~ou(x) + s(u(x) + x) = R(x), then 

f R(x)[1 + u ' ( x ) ] =  fu(x+co)+ f u ( x - c o ) - 2  fu(x) 

+ f u(x +co)u'(x)+ fu (x -co)u ' (x ) -2  fu(x)u'(x) 

+ f s(x + u(x))(1 + u'(x)) 

The first three terms cancel out and, realizing that integrating by parts we 
have jlu(x+co)u'(x)=~u(x)u'(x-co), we can write the last four terms 
terms as 

d d 
f d U(X) bl(X -- (I))-- f dx (lg(x))2 ~_ jf dx s(x -~- ~l(x)) 

Hence, the integral vanishes as claimed. 
If we denote 

and, analogously, 

we observe that 

Hence 

i 1 

j=O 

i i 
s}~'-l l(x) = E ~J(x)~J 

j = 0  

s(x+u} ~-' l l(x))=s} -~i '~(x)+O(~') 

[ <~i-- J~,u} ~'' ' l(x)+~s(x+u~ 'l(x)) 

XAo~u} ~-i ~lx +es}~-i-2J(x)+~'s ' l (x)+O(ei+ ' )  

If the u' are determined by solving (3.6), 

AC~ bl [ <~ i -  1 ] ( X )  - -  ~S[e <~i- 2( X ) = O 
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Hence, applying the previous argument, we obtain 

f [~'s' l(x)+O(e'+l)]El +u~<'-l](x) ' ] = 0  

Hence 

e' f s' l(x)dx=O(e~+l) 

and therefore ~ s ~- l ( x )  d x  = 0 as claimed. 
We furthermore claim that it is possible to implement very efficient 

algorithms that use the recursion described above., 
We observe that 

A~o exp(2rcikx) = 2 [cos(2nkco) - 1 ] exp(2rcikx) 

so that if we discretize the u i in terms of Fourier series, the linear equations 
(3.6) to be solved are diagonal. 

The s ~ can be computed in terms of the u i very efficiently if we use a 
trick that is described in ref. 15, Vol. 2, p. 507. 

We denote 

E(e, x) = exp[2zciku~(x) ] 

~ E(e, x) = 2gik exp[2gikue(x) l ~ u~(x) (3.8) 

= 2~zikE(e, k) ~ u~(x) 

If we expand E(e, x ) =  Zj= 0 Ei(x) d, we obtain, matching the coefficients of 
e u in (3.8), 

N 
(U+ l)EU+X(x)=2gik ~ EN-J(x)(j+ I)uJ+I(x) (3.9) 

j = 0  

Together with the initial condition E ~  1, (3.9) allows one to 
recursively compute E N+ 1 once one knows E~ ..... E N ( x ) .  

Of course, once we have computed the complex exponential, it is quite 
easy to compute trigonometric functions. Notice that the recursion 
relations (3.9) only require multiplication and addition of Fourier series 
and multiplication of Fourier series by a scalar. 

By examining the recursion relations (3.9) and (3.6), it is possible to 
show the following. 
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P r o p o s i t i o n  3.1 .  
degree d, then 

If s(x) in (1.1) is a trigonometric polynomial of 

deg u ~ = 2di - d i >1 1 

deg s i = 2di + q i >>. 0 

Proof. Proceeding inductively, we assume that the conclusions are 
true for i~< N. Then, (3.9) shows deg EN= 2Nd. 

Using the usual addition formulas for trigonometric functions, we see 
that d e g s N = 2 N d + d  and observing that (3.6) is diagonal on Fourier 
series, deg uN+I= 2Nd+ d, which is the inductive hypothesis for i =  N +  1. 
A small calculation shows that the hypothesis is satisfied for i =  1. II 

Remark. We emphasize that the existence of a KAM torus for a 
value of e is equivalent to the existence of a function satisfying (3.1), to that 
we should consider the expansion u~ = Z duJ(x) as an expansion taking 
place in a certain space of functions. 

This is obviously related, but in principle not equivalent, to 
considering the domains of analyticity of the functions obtained by 
specializing the expansion for values of x. 

For example, for the standard map, ui(1/2)= 0, so that for x = 1/2 the 
series expansion vanishes identically and, in particular, converges. 

If we denote by t?~, o the domain of convergence of K,(O), solving (3.4), 
the domain of validity of the KAM theorem is 

f i t =  {e136 >0,  {e} x {tim 01 <6} c fi,,0} 

In practice, however, it is more practical--following ref. 4 ~ t o  
compute ~ ( 0 ) ,  which is the domain of convergence of u,(O), for a fixed 0. 

Notice that (3.4) implies that if x is in the domain of K~, so is x + co. 
It follows that the domain of K~ in the 0 variable should be strip. 

On the other hand, from (3.3) it follows that for a fixed e, t2~, the 
domain of u~ in the 0 variable, is related to fl  x, the domain of K in the 0 
variable, by 

In the examples we have considered the numerical results sugests that 
~2X= g2~ and, hence, each is a strip around the real axis. 

Notice that the domain of convergence in the 0 variable can be 
computed for fixed ~ also using the Pad6 method. 

This could be considered a check of the computation of the perturba- 
tion expansion and of the Pad6 method, especially because there are 

822/67 3-4-I 5 
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renormalization group predictions about the scaling behavior of the 
domain of convergence of the function K. 

Given a series S(e)= Z eiSi, we define the Pad~ approximant of type 
I N : M ]  as the polynomials P(e), D(~) such that 

deg P = N, deg D = M; D(0) = 1 
(3.10) 

P(e)/D(e) = S(~) + O(e N+ M+I) 

The fact that P, D exist can be obtained by observing that (3.10) is 
equivalent to 

S(e) D(e) = P(e) + 0 ( ~  N+ M+ I) 

and, hence, expressing it in terms of the coefficients of the polynomials, 

M 

Si+ E Si jDj=Pj ,  i<~N 
j = l  (3.11) 

M 

Si+ ~ S~ j D j = 0 ,  N < i < N + M  
j - -1  

The second equation determines Dj and, substituting it into the first, we 
can obtain the P~. 

Even if it is quite possible to solve (3.11) directly, it is also possible to 
derive recursion relations for the Pad6 approximants for different M, N 
that allow a rapid calculation. 

We have, in general, preferred to use a direct solution of the linear 
system (3.11) because it allows us to obtain an estimate of the condition of 
the problem. 

It seems that u~(1/2- o-) converges in a finite domain, so that / ( ' (1/2)  
has a finite domain. 

The basis of the Pad6 method lies in the observation that the Pad6 
approximants frequently converge on much larger domains than the Taylor 
expansion, since the approximating class can accommodate bad behavior 
such as poles that cannot be accommodated by a Taylor expansion. Hence, 
frequently, the domains of analyticity of a function can be as ascertained by 
looking for the zeros of the denominator of the Pad6 approximant. 

This can be justified in several cases (see ref. 2, Vol. I, Chapter 6, for 
a review of the many results about the convergence of Pad6 series on the 
full domain). Unfortunately, there are cases where the Pad6 approximants 
of type I N : l ]  converge in a domain strictly smaller than the ball of 
convergence of the Taylor expansion (see, e.g., ref. 3, p. 400, or the more 
elaborate Gammel counterexample, ref. 2, Vol. I, p. 284). 
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Besides the theoretical considerations of the existence of counter- 
examples, there are several reasons that make the Pad6 approximants 
delicate to compute. We refer to ref. 2 for a very complete discussion, but 
point out some of the precautions we have taken to avoid them: 

1. The system (3.11) tends to be very ill-conditioned, so that small 
numerical errors in the coefficients of the series could be enormously 
amplified. 

2. The computation of zeros which have a larger magnitude than 
other zeros requires a large precision. This can be understood if we con- 
sider the function S(e)= 1 / ( 1 -  e )+  1 / ( 1 -  at); the ith Taylor coefficient is 
S i=  1 + a;, so that if a ~ 1, the information to compute the zero 1/a is 
contained in the last decimal figures. 

To these difficulties we may add the fact that polynomials with 
random coefficients tend to have their zeros on circles. Hence, it is difficult 
to assess the validity of a circle using the Pad6 method. 

We implemented the Pad6 method using the high-precision library of 
the public domain program PARI. 

A first implementation used macros to generate function calls. Signifi- 
cant parts of the code were tested on previous programs. Later, we 
produced another implementation using the FP programming language 
that is part of the PARI system. One advantage of doing so was that 
the language has primitives to manipulate polynomials so that the algo- 
rithms to compute the recursion relation could be coded very tersely. 
(Unfortunately, taking care of starting and final values made the programs 
difficult to read.) 

In the C language implementation we would obtain estimates of the 
condition number and made sure that the precision of the numbers was 
enough to obtain meaningful results. 

In the case that s(q) in (1.1) is a trigonometric polynomial that 
contains only odd powers of the sine, we have s(q + 1/2)= -s(q).  Hence, 
T~(p, q) = T ~(p, q + 1/2) - (0, 1/2). Using this symmetry, we can conclude 
that the domain in the e plane for which circles exist should be invariant 
under reflections across the origin. It is possible to use this symmetry to 
decrease the number of coefficients in the expansion to be handled and 
hence increase the speed and accuracy. We decided not to do that so that 
we can study s's which contain even frequencies with the same programs. 
Also, the consequences of the symmetry can be used as a verification of the 
accuracy achieved. 

A simple trick that seems to increase the precision of the calculation 
is to use instead of power series in the variable e power series in the 
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variable e/p, where p is a number chosen phenomenologically so that the 
series has a radius of convergence of about 1. The choice of p was done by 
performing the calculation once, estimating the radius, and restarting the 
calculation with p chosen to be the value suggested by the first calculation. 

We also point out that the zeros of the denominator need not be a 
singularity of the approximant if they are a zero of the numerator also. 
Hence, we implemented a second pass which eliminated the zeros that also 
correspond to an approximate zero of the numerator. 

In many practical applications of Pad6 methods, it is also customary 
to consider as spurious the zeros that are far away from those of other 
approximants. We have not implemented these methods. 

4. R E S U L T S  

Our results are summarized in the accompanying figures. 
In Fig. 1 we represent the zeros of the Pad6 approximants of type 

[95:95]  for the angles 0=i/10+0.034546 as well as the curve of the 
critical residue for orbits of type 8/13 evaluated for the standard map. 
Figure 2 represents the same calculation with the zeros of the denominator 
corresponding to a very small numerator removed. 

The map used, the degree of the Pad6 approximant, and the type of 
the periodic orbit are indicated on the line above the circle. 

In Fig. 3 we represent several critical curves corresponding to different 
orbits for the standard map. 

Figures 4-6 present the results of similar calculations performed for 
the standard-like map with 

1 
s(x) = sin(27rx) + ~ sin(2- 2~x) 

while Figs. 7-9 present the calculations for 

1 1 
s(x) = ~ sin(2nx) + ~ sin(3 - 2nx) 

We draw attention to the fact explained in the previous discussion 
that the zeros of largest modulus violate the symmetry requirements. 
Nevertheless, those of small modulus satisfy it to a very high accuracy. As 
expected, the zeros of high modulus do not seem to be reliable. 

Let us highlight some important points. 

A. The results seems to suggest that the domain of analyticity of the 
e expansion of K~ for fixed 0 is independent of 0. The analyticity domain 
for u~ seems to be constant except in 0 = 1/2. 
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B. For the standard map, the domains of critical residue are nested 
onto each other in the same way that they intersect on real line. That is, 
the domains of critical residue do not intersect. 

C. The results seems to indicate that the domains of analyticity com- 
puted by the Pad6 method and by taking the intersections of the domains 
bounded by the critical residue curves seem to agree. 

Point C is interesting for practical applications since the complex 
extension of Greene's method seems to be much easier to implement and 
has the capability of dealing with very asymmetrical domains. 

We point out that, according to the complex Greene method, the 
domain of analyticity for the ~ expansion of the standard map is n o t  a 

circle. The vertical and horizontal diameters differ by about 1%, which 
internal consistency checks suggests is between one and two orders of 
magnitude bigger than the reliability of the complex Greene method. 

Perhaps the most interesting feature uncovered by our calculations is 
that for some families the critical residue lines cross, so that, for certain 
values of the parameters, orbits of high period have not become hyperbolic, 
whereas some of the low-period ones have already experienced the 
transition. 
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This can be interpreted as indicating that the dynamics induced by the 
renormalization group in the space of maps has more complicated features 
than just the MacKay fixed point, so that successive iterates of the RG 
transformation are on different sides of the codimension-one surfaces 
obtained by requiring the residue of a particular orbit to have a critical 
value. 

Notice also that, according to the simple renormalization group 
scenario, the codimension-one surfaces in the space of maps ~n defined by 
the condition that the periodic orbit in the critical line of period Fn 
becomes hyperbolic are images of each other under the renormalization 
group and accumulate toward the stable manifold in a well-defined order. 
Hence, the order in which the orbits become critical should be a univeral 
property. 

The numerical evidence presented in this paper seems to corroborate 
these predictions for the standard map family and for families close to it. 
Nevertheless, it seems to contradict both predictions for families of the 
form (1.1) but with noticeably different functions. 

We consider this to be evidence that the standard renormalization 
group scenario has only a local validity and that the renormalization group 
operator has a dynamics with more complicated features than just a saddle 
point. 

More evidence along these lines and theoretical discussion, from the 
point of view of the RG method, reaching similar conclusions can be found 
in refs. 14, 24, and 25. 

We also point out that the fact that the domain of analyticity appears 
to be smooth for families such as the standard map can be explained by 
assuming that the domain of analyticity of the invariant circle in the 
unstable manifold of the renormalization group--which in the complex 
extension is a manifold of complex dimension 1--has a smooth boundary. 
Then, the fact that the boundary becomes nonsmooth is again an indica- 
tion that by changing the family we change from one universality class to 
another. Given the fact that the order of the crossings seems to change in 
a quite complicated way, it is natural to conjecture that this change of 
universality class is also given by the fact that the renormalization group 
has a complicated dynamics. 

If this conjecture were true, it would have profound implications for 
the dynamics on the unstable manifold of the fixed point. We recall that, 
restricted to the unstable manifold, the renormalization group transforma- 
tion is an analytic map of one complex variable and that the domain of 
existence of the invariant circle is the domain of attraction of the fixed 
point. A theorem of Brolin (ref. 1, Theorem9.1) says that for rational 
transformations on the Riemann sphere, the only possible boundaries of 
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domains  of at t ract ion for first-order fixed points that  have tangents are 
circles or straight lines. We think it could be very useful to study in detail 
the global dynamics of the renormalizat ion g roup  restricted to the global 
stable manifold of M a c K a y ' s  fixed point. 

It is also worth remarking that, independently of  the conjecture about  
the smoothness  of the boundary ,  this bounda ry  of at t ract ion of the trivial 
fixed point  is an invariant set. The points on it neither converge to the 
trivial fixed point  under successive renormalizat ions nor  escape to infinity. 
This suggest that  the invariant  circles associated with them will have rather 
peculiar scaling properties. 

A C K N O W L E D G M E N T S  

We thank E. Cheney, G. Baker, A. Berretti, L. Chierchia, A. Celletti, 
R. MacKay ,  and M. Mul doon  for discussions. We have used the public 
domain  software packages P A R I  and X G R A P H  and thank the authors  for 
making  available such fine tools. The work of  R .d . l i .  has been supported 
by Nat iona l  Science Founda t ion  grants. 

R E F E R E N C E S  

1. H. Brolin, Invariant sets under iterations of rational functions, Ark. Mat. 6:103-144 
(1965). 

2. G. Baker and M. Graves-Morris, Pad~ Approximants (Addison-Wesley, 1981). 
3. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and 

Engineers (McGraw-Hill, New York, 1978). 
4. A. Berretti and L. Chierchia, On the complex analytic structure of the golden invariant 

curve for the standard map, Nonlinearity 3:39-44 (1990). 
5. A. Berretti, A. Celletti, L. Chierchia, and C. Falcolini, Natural boundaries for area 

preserving twist maps, J. Stat. Phys., to appear. 
6. R. De Vogelaere, On the structure of symmetric periodic solutions of conservative 

systems, with applications, in Contributions to the Theory of Nonlinear Oscillations, 
Vol. IV (Princeton University Press, Princeton, New Jersey, 1958). 

7. C. Faleolini and R. de la Llave, A rigorous partial justification of Greene's criterion, 
J. Stat. Phys. 67:609 643 (1992). 

8. W. H. Press, B. P. Flannery, S. Teukolski, and W. T. Vetterling, Numerical Recipes 
(Cambridge University Press, Cambridge, 1986). 

9. J. Greene, A method for determining a stochastic transition, J. Math. Phys. 20:1183-1201 
(1979). 

10. J. M. Greene and L C. Percival, Hamiltonian maps in the complex plane, Physica 
3D:530-548 (1981). 

11. C. Go16, A new proof of Aubry-Mather's theorem, ETH preprint. 
12. M. Herman, Sur la conjugasion diff6rentiable des diff6omorphismes du cercle a des 

rotations, Pub. Mat. IHES 49:5-234 (1979). 
13. H.-T. Kook and J. D. Meiss, Periodic orbits for reversible symplectic mappings, Physica 

35D:65-86 (1989). 



666 Falcolini and de la Llave 

14. J. A. Ketoja and R. S. MacKay, Fractal boundary for the existence of invariant circles 
for area preserving maps: Observations and a renormalisation explanation, Physica 
35D:318 334 (1989). 

15. D. E. Knuth, The Art of Computer Programming, Vol. II, 2nd ed. (Addison-Wesley, 1981 ). 
16. J. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, 

Topology 21:457-467 (1982). 
17. R. S. Mackay, Renormalisation in area preserving maps, Thesis, Princeton University, 

Princeton, New Jersey (1982). 
18. R. S. Mackay, A renormalisation approach to invariant circles in area preserving maps, 

Physica 7D:283 300 (1983). 
19. R. S. MacKay, On Greene's residue criterion, Preprint. 
20. M. Muldoon, Ghosts of order on the frontier of chaos, Thesis, California Institute of 

Technology (1989). 
21. I. Percival, Chaotic boundary of a Hamiltonian map, Physica 6D:67-77 (1982). 
22. E. Pifia and L. Jimenez Lara, On the symmetry lines of the standard mapping, Physica 

26D:369-378 (1987). 
23. C. L. Siegel and J. Moser, Lectures on Celestial Mechanics (Springer-Verlag, New York, 

1971). 
24. J. Wilbrink, Erratic behaviour of invariant circles in standard-like mappings, Physica 

26D:358-368 (1987). 
25. J. Wilbrink, New fixed point of the renormalisation operator associated with the 

recurrence of invariant circles in generic Hamiltonian maps, Nonlinearity 3:567-584 
(1990). 


